Vectorization
-
[모두를 위한 딥러닝] 4. multi-variable linear regressionAI/모두를 위한 딥러닝 2020. 11. 25. 01:28
# Mulit-variable linear regression 앞에서 공부했던 선형 회귀는 하나의 변수에 대하여 출력을 계산했다. 그러나 위 시험 점수 예측 사례의 퀴즈 1 점수, 퀴즈 2 점수, 중간고사 점수처럼 여러개의 변수를 고려하여 회귀를 진행할 땐 어떻게 해야할까? 기존의 선형 회귀 식은 H(x) = Wx + b였다. 다변량 선형 회귀는 위와 같이 기존 선형 회귀와 유사하게 새로운 가중치 w를 각각의 새로운 변수 x들에 곱해주면 된다. 다변량 선형 회귀의 비용함수 역시 선형 회귀의 비용함수 식을 그대로 가져오되 Hypothesis만 다변량 회귀식으로 적용하여 사용한다. Hypothesis를 n개의 변수에 대하여 일반화하면 위와 같다. 그러나 n의 값이 커질수록 식이 길어서 이를 표현하기 어려워지..